
UDP / TCP socket

Encapsulator
Prepares outgoing
packets to the socket

"Decapsulator"
Parses packets from
the socket

Packet consumer
Reads packets from
the tun/tap device

Packet producer
Writes packets to
the tun/tap device

TUN/TAP device

}Socket module
Can be exchanged to support other
transports than the default UDP/TCP.

Encryption
Encrypts data which
is being sent to the
remote host

Decryption
Decrypts data from
the remote host }SSL module

Separate modules which supports
OpenSSL, GNUTLS, NSS, etc

Authentication
Sends authentication
data to remote host

Authenticaion
Receives auth-data
from remote host }Authentication module

Separate modules for each authentication
scheme, like SSL certificate, username/password, etc

}Consumer/producer module
Reads and writes data from the packet bus to/from the
TUN/TAP device

Compressor
Compresses data
going to the remote
host

Decompressor
Decompresses data
from the remote host}Compression module

Modules supporting different compression algorithms

Kernel space

Kernel space

Routing
Routes a package
to a remote host

Routing
Routes a package
from the tunnel to
either local TUN/TAP
or another remote

Packet mangler
Modifies outgoing
packets

Packet mangler
Modifies incoming
packets }

Protocol module
Modules supporting different network protocols, layer
independent. This will cover IPv4, IPv6, SCCP, IGMP, etc.
Mesh networking would be implemented at this level
as well.

The purpose is make sure the packets have the correct
attributes set and to route them to their proper destination,
no matter if it is going to/from the local TUN/TAP device or being
directed from a remote host to another remote host.

Configuration
Sends configuration
settings to a remote
host

Configuration
Receives a remote
configuration and
parses it

}Configuration handshake
Exchange and agree on configuration parameters over-the-wire.
Must support todays variant where both sides must have the same
options, or a centralised model where server can override params.

